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Abstract-Two phase natural convection adjacent to a heated, vertical surface in a permeable medium is 
treated using boundary-layer approximations for conditions under which the vapor layer adjacent to the 
heated surface is thin. A similarity solution is obtained for the case in which density differences due to the 
phase change dominate those due to temperature variations in the liquid phase outside the vapor layer 
and for which the surface temperature, the temperature far from the surface, and the heat of vaporization 
do not vary with distance along the surface The application of this solution to problems of practical 

interest using the approximation of local similarity is discussed. 

NOMENCLATURE 

CP, 
specific heat of fluid ; 

;. 
acceleration of gravity; 
heat of vaporization per unit mass; 

k ln? thermal conductivity of permeable 
medium ; 

K, permeability; 

1, physical length scale defined in equation 

(2X); 
Nn,, local Nusselt number; 

PV fluid pressure; 

4, local heat-transfer rate; 

Ra,, local Rayleigh number; 

T, temperature ; 

n.0 horizontal velocity; 

UZ, vertical velocity; 

.v, horizontal coordinate; 

=, vertical coordinate. 

Greek symbols 

a, parameter appearing in similarity solution 
of equation (26); 

D9 coefficient of thermal expansion; 

ii, vapor layer thickness ; 
1’9 kinematic viscosity; 

P? fluid density. 

Subscripts 

L, liquid phase; 

V, vapor phase; 
0, value on vertical surface .Y = 0; 

A, value on phase change boundary; 
a, value at large Y. 

INTRODUCTION 

THE STUDY of natural convection in permeable 
media has important applications in both engineer- 
ing and the earth sciences. One important geological 
application is to the cooling of bodies of igneous 
rock emplaced into permeable crustal rock near the 

surface of the earth. In areas of abundant igneous 
activity, the crystallization and cooling of igneous 
intrusions represents a significant source of geother- 
mal energy. 

Early studies of the cooling of igneous bodies 
considered heat conduction to be the principal 
mechanism of heat transfer from an intrusion to 
cooler, surrounding rock [I-J]. However, presently 
active geothermal systems provide abundant evid- 
ence for the movement of heated groundwater in 
some areas of igneous intrusion, and it is generally 
accepted that groundwater movement is an impor- 
tant mechanism of heat transfer in such areas (cf. 
[4]). More recently, geochemical studies of igneous 
rocks [S] demonstrate that groundwater has moved 
through rock both in and around a number of 
intrusions. There is thus the need to understand 
natural convection of groundwater in permeable 
rock surrounding igneous intrusions. 

Thermal convection has been long recognized as a 
simple mechanism for generating groundwater 
motion and a variety ofstudies ofthermal convection in 
permeable media have been reported [6-g]. The 
most detailed studies of the effect of groundwater 
circulation on the cooling of igneous intrusions thus 
far reported are those of Cathles [lo] and Norton 
and Knight [I 11. In these studies finite difference 
models of cooling intrusions were developed and 
were applied to investigate the effect of physical 
parameters such as the size, depth and permeability 
of an intrusion. 

This study treats the problem of flow in a 
permeable medium adjacent to a heated, imperme- 
able vertical surface. An earlier study by Cheng and 
Minkowycz [ 121 has considered this problem for 
flow of a single phase liquid. The present study 
considers the natural convection of a fluid which 
vaporizes in the vicinity of the heated surface. 

In many geological situations it is reasonable to 
suppose that circulating groundwater within perme- 
able rock surrounding an intrusion is at a pressure 
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close to hydrostatic which increases by about one- 
tenth of a kilobar (IO MPa) for each kilometer of 
depth below the water table. The critical pressure of 
pure water is about 220 bars (22 MPa) correspond- 
ing to a depth of slightly more than 2 km. Saline 
water can have sjgni~~antly higher critical pressure 
[ 131 and therefore be subcritical to greater depths. 
Some types of igneous intrusions are emplaced at 
temperatures in excess of IOOO”C into rock at 
temperatures of several hundred “C. At the time of 
emplacement, the temperature at the contact be- 
tween intrusive and surrounding rock will be 
approximately the average of the intrusion tempera- 
ture and that of the surrounding rock. Therefore 
contact temperatures may be initially as high as 
6OO”C, and, for pressures less than the critical 
pressure, water near the contact will be in the vapor 
phase during the early stages of the cooling of such 
an intrusion. For purely conductive heat transfer, 
Jaeger [3] has considered the latent heat effect of 
vaporizing groundwater contained in porous rock 
surrounding an intrusion. The finite difference 
models of Cathles [lo] and Norton and Knight [I I] 
also treat vaporization by accounting for enthalpy 
variations due to phase changes and by using an 
empirical equation of state for water. These studies 
do not, however, treat the flow of mixed phases. A 
study by Donaldson [I41 treats the problem of 
mixed phases in the case of a horizontally uniform, 
vertical flow. 

In this paper natural convection due to the 
formation of a vapor layer adjacent to a heated 
vertical surface in a permeable medium is treated 
using boundary-layer approximations with the 
assumption that the vapor layer is thin. Boundary- 
layer ~~pproximations have been previously applied 
to thermal convection of a single phase fluid in a 
permeable medium [I?, 1% IX]. Here the boundary- 
layer formulation for a vertical vapor layer is 
developed, and a similarity solution is obtained for 
the case in which density differences due to the phase 
change dominate those due to temperature vari- 
ations in the liquid phase outside the vapor layer. 
The treatment of this problem is greatly simplified by 
the fact that no region of mixed phases occurs. 
Application of these results to studies of the cooling 
of igneous intrusions using a local similarity approxi- 
mation is discussed. 

FORMULATION OF BOUNDARY-LAYER 
APPROXIMATIONS 

To develop the boundary-layer approximations 
for a vapor layer in a permeable medium adjacent to 
a heated vertical surface, the (s, :) coordinate system 
shown in Fig. 1 is introduced. The vapor layer is 
taken to be of thickness ii which increases with 
increasing :. Boundary-layer approximations are 
introduced with the assumption that the vapor layer 
is thin. Since there is no geometrical length scale 
with which to compare the thickness, a thin layer is 

, P= P,(Z) 

‘//x //‘//“’ 
FIG. 1. Coordinates and uomencfature for a thin vapor 
layer adjacent to a heated vertical surface in a permeable 

medium. 

assumed to be one for which c = dri/d-_ is small 
compared to unity. 

Flow in a permeable mediitm is described by the 
equation for conservation of mass and by Darcy’s 
law. For steady state tlow these are given by 

v.pti = 0 (1) 

and 

$xi = -Vp-tylj 

respectively. Here ii is the Darcian fluid velocity, p is 
the fluid density, p is the pressure, g is the 
acceleration of gravity, 1’ is the kinematic viscosity of 
the fluid, and K is the ~rmeability of the medium. If 
the fluid density field is known or can be calculated 
from a suitable equation of state, equations (1) and 
(2) determine the pressure and velocity fields. 

First consider the Row within the vapor layer s 
< d. The density of the vapor phase is assumed to be 
small compared to that of the liquid phase so that 
the body force term which appears in equation (2) 
and which represents the hydrostatic contribution to 
the vertical pressure gradient may be neglected 
within the vapor layer. Darcy’s law then reduces to 

vp= - +I7 

For constant 1% and I(, substituting equation (3) into 
the continuity equation (I) gives 

Vp = 0 (4) 

for x < ci. To examine solutions for the pressure field 
within the vapor layer in the limit f:+(f, the 
coordinates 

< = \-it:: g = ; 

are introduced where the r-coordinate is stretched 
by the factor l/z. fn terms of these new coordinates, 
equation (4) becomes 

This form of the equation shows that for small I: 
derivatives along the vapor layer may be neglected 
with respect to those across the layer, and hence 
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equation (4) may be written in the simple approxi- where Vp’ is the pressure gradient due to flow and 

mate form pLQ is the hydrostatic pressure gradient. Then 

8% o 

asf= ’ 

To obtain a solution, boundary conditions on x = 0 
and s = (S must be prescribed. The vertical surface at 
s = 0 is taken to be impermeable so that the 
horizontal velocity must vanish and therefore aP/dx 
= 0 at .Y = 0. On the liquid-vapor boundary at .Y 
= 6 the pressure is assumed to be P = pA(z) where 
PA(z) is to be determined from the flow outside the 
vapor layer. The solution of equation (5) satisfying 
these boundary conditions is simply 

P = P,,(Z) (6) 

for ,O < x < (S. The vertical mass flux within the 
vapor layer is then given by 

K dP, 
PUZ = - y x (7) 

and the horizontal mass flux pux, obtained by 
integrating the continuity equation (1) with respect 
to the .Y coordinate using (7), is given by 

a 
P”.Y = -z s “5 dp,& o v dz ’ 

For constant K and v, this reduces to 

Kx d2p, 
pux= -u&F’ 

Therefore the pressure and mass flux vector within 
the vapor layer are determined solely by the pressure 
on the phase boundary. 

The pressure variation on the phase boundary is 
determined by the flow outside the vapor layer in the 
region x > 6. The liquid flowing in this region is 
assumed to be incompressible and to have a constant 
density pL. Therefore equations (I) and (2) become 

v.u=o (9) 

PL”L - 
yl4 = -vp+pLlj. (10) 

For flow outside the vapor layer, the boundary 
condition on z = 0 is u, = 0 and on the edge of the 
vapor layer the mass flux into the vapor layer 
pLu,[,=,j must balance the change with z of the mass 
flux within the vapor layer. For a thin vapor layer 
the boundary condition on x = 6 may be applied on 
x = 0. With this approximation, which is commonly 
made in other applications of boundary-layer theory, 

pLu,I,=o = -; s “puzdx. 
0 

Using equation (7) t.his becomes 

u,(,=o = 5. .c a- ap 
P,V az (I> az x=o 

(11’) 

where plxZo corresponds to pA(z). Outside the vapor 
layer, the pressure is separated into two parts 

VP = vp’+pLg 

VP’ = - yL fj. (12) 

For constant K and vL, substituting (12) into (9) 
gives 

v2pt = 0 (13) 

On x = 0 equation (I 1) becomes 

and on z = 0 since u, = 0 

apI 
az ==(J = O, (15) 

Equation (14) can be expressed solely in terms of 
the pressure by taking 

K apl II, =--- 
x=0 pLvL 8.x x=0 

from equation (12). Then the differential equation 
(13) along with boundary conditions (14) and (15) 
result in a mixed boundary value problem for the 
pressure field outside the vapor layer. This solution 
however depends on 6(z) which must be determined 
from the temperature field. The formulation of an 
energy equation governing the temperature field is 
discussed later. 

A simple solution for flow outside the vapor layer 
can be obtained by assuming that u, or equivalently 
that dp’/az is small. Equation (14) then becomes 

Kg di5 
u, =-_-, 

x=0 v dz 

If u, is small, the continuity equation reduces to 
duJax = 0 and therefore 

Kg d6 
UXZ ---. 

v dz (16) 

To obtain an explicit estimate of the error 
introduced by this approximation, note that the 
exact solution for u, must satisfy V2u, = 0. 
For the solution given by equation (16) V2u, = 
- (Kg/v)(d3S/dz3) so that the approximate solution 
is valid if (Kg/v)(d3S/dz3) is small. For ap’/az small, 
dpddz = -pLg and the mass flux within the vapor 
layer given by equations (7) and (8) becomes 

Km 
PUZ = y- (17) 

pu, = 0. (18) 

If u, is small outside the vapor layer, liquid must 
move toward the heated vertical surface from large 
distances. A pressure gradient is required to generate 
the inflow so that the pressure p’ must increase with 
increasing x. A difficulty therefore arises in specifying 
the pressure in the vicinity of the heated vertical 
surface. This behavior of the pressure also occurs in 
the single phase problem treated by Cheng and 
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Minkowycz [ 121, but in that problem it is not 

necessary to evaluate the pressure explicitly. Ad- 

jacent to a vertical surface in a permeable medium of 
finite size, a region of recirculating flow will be 
established as shown for example in the case of a 
cooling igneous intrusion by the finite difference 
models of Cathles [lo]. Within such a region of 
recirculating flow, p’ will be small compared to the 
hydrostatic pressure. Therefore, in situations of 
practical interest, it is reasonable to suppose that the 
pressure in the vicinity of the heated vertical surface 
will be hydrostatic to a first approximation. 

LIPUIO 
CRITICAL 

POINT 

P 

I t 

T 
FIG. 2. Trajectories in pressure-temperature space de- 

scribed in the text. 

It has so far been assumed that a phase boundary 
occurs across which liquid is transformed directly to 
vapor without the formation of a mixed phase 
region. Justification for this comes from examining 
the paths in pressure-temperature space followed by 
fluid moving along paths of motion such as shown in 
Fig. I. As shown in Fig. 2, pressure-temperature 
paths begin within the liquid region above the vapor 
pressure curve. With pressure decreasing along the 
path, Ruid nioves with increasing temperature to- 
wards the vapor pressure curve. In crossing the 
vapor pressure curve three paths labelled A, B, and C 
are shown. In physical space a region of mixed 
phases could occur along any of the paths shown, 
Path A cannot occur unless pressure iricreases in the 

direction of flow which is inconsistent with Darcy’s 
law. Path C cannot occur unless temperature 
decreases in the direction of flow, the negative .Y- 
direction. However, temperature must decrease with 
increasing .Y to transport heat from the heated 
surface to the region in which vaporization occurs. 
Neither of these physical inconsistencies occur along 
path B. Along path B if a mixed phase region were to 
form at the point where the vapor pressure curve is 
first intercepted, then the pressure would have to be 
uniform throughout the mixed phase region. As for 
path A this would be inconsistent with Darcy’s law. 
Therefore fluid must follow a path such as B and 
must transform directly from liquid to vapor with no 
mixed phase region. These general arguments are 

consistent with the results of Rubin and Schweitzer 
[ 191 who treat the problem of one dimensional flow 
through a phase change. 

Within the vapor layer, a boundary-layer form of 
the equation for conservation of thermal energy is 
applicable. Since u, 2: 0 and neglecting heat con- 
duction compared with convection in the 2 direction, 
a balance exists between vertical convective heat 
transport and horizontal conductive heat transport 
which is expressed as 

pcpu, 2 = k, $ (19) 

where T is the temperature, cp is the specific heat of 
the vapor assumed to be constant, and k, is the 
thermal conductivity of the permeable medium. On 
?I = 0, T = T’(z) where T,(z) is a prescribed tem- 
perature and on s = 6, T = T, where T, is the 
vaporization temperature corresponding the hy- 
drostatic pressure at a particular value of 3. 

Outside the vapor layer U, zz 0 and again neglect- 
ing heat conduction in the z-direction gives a balance 
between horizontal conductive and convective heat 
transport which is expressed as 

a2T 
PI.C~LU, g = km s 

with T m T, for large s and T = Tb on .Y = 6. 
An additional boundary condition is required on 

s = S which relates the rate at which heat is 
absorbed by vaporization to the net heat flux 
reaching the phase boundary. This heat balance can 
be expressed as 

d$ ST 
pHy$j = -k"jj& 

dT 
fk"ay,x=d. 

(21) 

where H is the heat of vaporization per unit mass. 
The horizontal temperature gradient is discon- 
tinuous across the phase boundary and the notation 
x = f$- and 6’ refers to values approaching the 
phase boundary from .Y < 6 and .Y > 6 respectively. 

Equation (20) may be solved without explicitly 
considering the variation of u, or TA with -_. The 
solution which satisfies the boundary conditions 
given above is 

T = T,+(T,-T,)exp 
i 1 

(22) 

for x 2 6. Then differentiating and using equations 
(16) and (I 7) 

kmg = -PC ,(T,-T P 71 )u d". = dz 
(231 

X=4’ 

This may be used to simplify the form of equation 
(21) for the heat balance on the phase boundary to 
give 

kiilZl 
In ax x=,, 

(24) 

where A = H$c,,(T,-T,). 
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Using the previous result for pu,, equation (19) 
becomes 

ar -= 
az (25) 

with T = T,(z) on x = 0 and T = T,(z) on x = 6. 
Equations (24) and (25) together with the boundary 
conditions on temperature form a Stefan problem. 

AN EXACT SlMlLARlTY SOLUTION 

Only one exact solution of the Stefan problem is 
known. This similarity solution can be applied to the 
present problem if To, T,, and fi do not vary with 2. 
In this case the solution given by Carslaw and Jaeger 
[20] can be written in the form 

T=T,+erfa 6 

Ti-Gerf a-y 0 (26) 

with 

and 

6 = 2GI(IZ)“2 (27) 

I= (&J&J 
The constant a is determined from the equation 

(28) 

The value of a as a function of c,(T,- TJZ? is 
plotted in Fig. 3. The heat flux from the vertical 
surface, calculated from equation (26), is given by 

aT 2a 
4 = -kmx l=. = (n)l,2erfa km . (JO) 

This can also be expressed in terms of a local Nusselt 
number Nu, = qz/k,(T, - T,) as 

1 
Nuz = (41/Z (31) 

where 

Ra = pLcpgK= 
z 

vkm 
is the local Rayleigh number. The local Nusselt 
number given by equation (31) has the same 
dependence on z as that derived from the similarity 
solution for a single phase liquid [12]. It depends, 
however, on a greater number of physical conditions 
and the local Rayleigh number is of a different, but 
equivalent, form. The form of the Rayleigh number 
for single phase flow can be obtained by multiplying 
the expression given in equation [32] by the product 
of the coefficient of thermal expansion of the liquid 
and a characteristic temperature difference. This 
product, which must be small if the Boussinesq 
approximation is to be applicable, represents a 
characteristic density difference normalized by a 
reference density. In the two phase problem, as 
treated in the present study, the expression (pL 
-pv)/pL is the appropriate normalized characteristic 
density difference, and for pv << p,, this is equal to 
unity. 

To simplify the formulation of the two phase 
problem, the liquid outside the vapor layer has been 
assumed to be of constant density. However, the 
density of any real liquid will depend on tempera- 
ture. The horizontal temperature variation outside 
the vapor layer as given by equation (22) will result 
in density variations that give rise to natural 
convection in the liquid phase. An equation to 
describe this flow can be obtained by cross- 
differentiating and subtracting the vector com- 
ponents of equation (IO). With the boundary-layer 
approximation a/& << a/& this gives 

pL au _-A aPL 
K as =-9x. (33) 

FIG. 3. The parameter a for the similarity solution. 



The density of the liquid can be expressed as I’,, 

= p, [I +p,,(T, -T)] where p, is the density of the 

liquid at temperature T, and /I,, is the coefficient of 

thermal expansion. Then requiring tlZ _ 0 as .\- + x,, 

equation (33) can be integrated to give 

Natural convection of liquid outside the vapor 

layer can be neglected if Iu,I c Iu,I. Using the 

expression for n, in equation (16) results in the 

condition 

or for the similarity solution 

For sufficiently large values of Ru, and/or for small 

values of c( (i.e. small values of T, - T1 or large values 

of 8, see Fig. 3) the condition [X5] cannot be 

satisfied. A transition will occur from convection 

dominated by density differences due to the phase 

change to convection due to density variations 

within the liquid phase as treated by Cheng and 

Minkowycz [I I!]. 

APPLICATION TO PROBLEMS OF 
GEOLOGICAL INTEREST 

For applications to cooling intrusions, the hy- 

drostatic pressure and therefore the temperature I-, 

will vary significantly with height along the contact 

between an intrusion and surrounding rock. The 

heat of vaporization and the temperature at large 

distances from the contact will also vary. Therefore, 

the similarity solution is not strictly applicable to 

most cases of interest. 

However, if r,, T,, and B change only slightly 

over a distance comparable to the thickness of the 

vapor layer, the approximation of local similarity 

may be applied. The basis for this approximation is 

to assume that the temperature distribution for the 

similarity solution, given by equation (26), applies 

locally and that the variation of the vapor layer 

thickness with height along the vertical surface may 

be determined by integrating the differential form of 

equation (27) obtained by assuming that E is locally 

constant 

(36) 

In the non-similar case, z will vary slowly with 2. It is 

clear from Fig. 3 that a varies slowly with c,(T, 

- r,)/H suggesting that local similarity will be a 

good approximation for a wide range of conditions 

of practical interest. In the locally similar approxi- 

mation, the heat Rux from the vertical surface is 

determined from equation (30) using the local value 

of a and the vapor layer thickness determined from 

equation (36). The local similarity approximation 

has been applied to a variety of boundary-layer 

problems, generally with excellent results. For exa- 

mple, Minkowycz and Cheng [17] found it to be an 

excellent approximation for free convection about a 

vertical cylinder for a wide range of conditions. Their 

treatment, although more formally derived, is 

equivalent to the approach discussed above. 

SUhlMAR\ 

Natural convection in a permeable medium due to 

the formation of a vapor layer adjacent to a vertical, 

heated surface has been treated using boundary-layer 

approximations for a thin vapor layer. In this 

situation liquid moving toward the heated surface 

transforms directly to vapor with no region of mixed 

phases. A similarity solution of the boundary-layer 

equations is presented for the case in which the 

temperature of the surface and of the liquid at large 

distances from the surface as well as thermodynamic 

properties such as the heat of vaporization do not 

vary with height along the surface. This leads to a 

simple analytical result for the rate of heat transfer 

from the surface. In obtaining these results it has 

been assumed that the density of the liquid does not 

vary with temperature. For a real liquid, the range of 

conditions for which this approximation is reason- 

able have been identified. It is suggested that realistic 

geologic problems of cooling igneous intrusions, 

which have been the primary motivation for the 

present study, can be treated using local similarity 

approximations. 
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CONVECTION NATURELLE DIPHASIQUE ADJACENTE A UNE 
SURFACE VERTICALE CHAUDE DANS UN MILIEU PERMEABLE 

Resume-La convection naturelle diphasique adjacente a une surface verticale chaude, dam un milieu 
permeable, est trait& a partir des approximations de la couche limite avec la condition d’une couche 
mince de vapeur contre la surface chaude. Une solution de similarite est obtenue dans le cas oti les 
differences de densite dues au changement de phase dominent celles dues aux variations de temperature 
dans la phase liquide hors de la couche de vapeur, et oti la temperature de surface, la temperature au loin 
et la chaleur latente de vaporisation ne varient pas avec la distance le long de la surface. On discute de 
I’application de cette solution aux problemes dint&et pratique utilisant l’approximation de la similarite 

locale. 

FREIE KONVEKTION BE1 ZWEI PHASEN IN EINEM PORC)SEN MEDIUM 
AN EINER BEHEIZTEN SENKRECHTEN WAND 

Zusammenfassung-Die zweiphasige freie Konvektion in einem poriisen Medium an einer beheizten 
senkrechten Wand wird mittels Approximationen der Grenzschicht fur Fiille behandelt, bei denen die 
Dampfschicht an der beheizten Wand diinn ist. Eine ;ihnlichkeitslosung wird fiir Falle erhalten, bei 
denen die Dichteunterschiede infolge des Phasenwechsels diejenigen infolge Temperaturanderungen in 
der Fliissigkeitsphase auBerhalb der Dampfschicht iiberwiegen und bei denen sich die Oberfllchentempe- 
ratur sowie die Temperatur weit entfernt von der Wand und die Verdampfungswarme entlang der Wand 
nicht indern. Die Anwendung dieser Losung auf interessierende praktische Probleme wird unter 

Verwendung der naherungsweisen lokalen Ahnlichkeit diskutiert. 

ABYX@A3HklI ECTECTBEHHAH KOHBEKIIHJI BIiJIH3H BEPTHKAJILHOI? 
HAI-PEBAEMOfi I-IOBEPXHCK%‘M B I-IPOHkiHAEMOfi CPE,IIE 

AHHOT~UIIYI - C noMotmto npw6nwxewR norpamwroro cnoa uccnenyercn nByQa3Han ecTecTBeH- 
tfaa KoHaeKuBa B npomiuaeMofi cpene n6nk1314 HarpesaeMoii BepTHKanbHofi noeepxHocTH npH 
HanHYWH Ha noBepxHocTu TOHKO~O cnon napa. MeTOnOM nono6ar nonylreeo pemeHHe ~~JHT cnyrar, 
KOrLIa pa3HOCTb nJtOTHOCTeH, 06yCJtOBJIeHHaX tba3OBbtM nepeXOflOM npeBaJlHpyeT Han pa3HoCTblO, 
Bbt3btBaeMOii H3MeHeHHRMH TeMnepaTypbI B EHJlKOfi @a3e 38 npefiexaMH napOBOr0 CJtOX, H KOI-J&J 
TeMnepaTypa noeepxrrocre, TeMnepaTypa Ha HeKoTopoM paCCTORHHH OT nosepwocTH H TennoTa 
napoo6pa3oBaHHa He HJMeHsmTCs c paccTonHHeM BnOJtb nnacTriHbr. OScymsaeTcn B03MOIKHOCTb 

npeMeHeHua ilamroro pememin K 3anaraM, npencTaBnrtomtiM ~~~KTHH~cKHH mrTepec. 


